Enhancing prioritisation of technical attributes in quality function deployment
Zafar Iqbal,
Nigel Peter Grigg,
K. Govindaraju and
Nicola Marie Campbell-Allen
International Journal of Productivity and Performance Management, 2015, vol. 64, issue 3, 398-415
Abstract:
Purpose - – Quality function deployment (QFD) is a planning methodology to improve products, services and their associated processes by ensuring that the voice of the customer has been effectively deployed through specified and prioritised technical attributes (TAs). The purpose of this paper is two ways: to enhance the prioritisation of TAs: computer simulation significance test; and computer simulation confidence interval. Both are based on permutation sampling, bootstrap sampling and parametric bootstrap sampling of given empirical data. Design/methodology/approach - – The authors present a theoretical case for the use permutation sampling, bootstrap sampling and parametric bootstrap sampling. Using a published case study the authors demonstrate how these can be applied on given empirical data to generate a theoretical population. From this the authors describe a procedure to decide upon which TAs have significantly different priority, and also estimate confidence intervals from the theoretical simulated populations. Findings - – First, the authors demonstrate not only parametric bootstrap is useful to simulate theoretical populations. The authors can also employ permutation sampling and bootstrap sampling to generate theoretical populations. Then the authors obtain the results from these three approaches. qThe authors describe why there is a difference in results of permutation sampling, bootstrap and parametric bootstrap sampling. Practitioners can employ any approach, it depends how much variation in FWs is required by quality assurance division. Originality/value - – Using these methods provides QFD practitioners with a robust and reliable method for determining which TAs should be selected for attention in product and service design. The explicit selection of TAs will help to achieve maximum customer satisfaction, and save time and money, which are the ultimate objectives of QFD.
Keywords: Quality function deployment; Central-limit theorem; Confidence interval; Folded normal distribution; Parametric bootstrapping (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:ijppmp:v:64:y:2015:i:3:p:398-415
DOI: 10.1108/IJPPM-10-2014-0156
Access Statistics for this article
International Journal of Productivity and Performance Management is currently edited by Dr Luisa Huatuco and Dr Nicky Shaw
More articles in International Journal of Productivity and Performance Management from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().