Detecting manager’s fraud risk using text analysis: evidence from Iran
Alireza Rahrovi Dastjerdi,
Daruosh Foroghi and
Gholam Hossain Kiani
Journal of Applied Accounting Research, 2019, vol. 20, issue 2, 154-171
Abstract:
Purpose - In accounting and finance, researchers have used many ways to detect manager’s fraud risk. Until now, many researchers have used some data mining methods in these two fields to detect this risk. The purpose of this paper is to compare the precision of two data mining methods in detecting such a risk. Design/methodology/approach - For this purpose, this paper analyzed the texts of board’s reports and used two methods including the convex optimization (CVX) method and least absolute shrinkage and selection operator (LASSO) regression method. In this way, the words of these reports, which have the greatest power in explaining the manager’s high fraud risk index, were identified. Using these words, this paper presented a model that could detect manager’s high fraud risk index in companies. Findings - The results indicated that both methods can detect the manager’s high fraud risk index with a precision between 82.55 and 91.25 percent. The LASSO method was significantly more precise than the CVX method. Research limitations/implications - The lack of access to an official and reliable list of firms suspected to fraud and the lack of access to the Microsoft Word (MS Word) file of board’s reports were two of the most important limitations of this study. Practical implications - Regulatory bodies and independent auditors can consider the proposed methods in this study for assessing the fraud risk for a firm or other legal parties. Originality/value - This paper avoided using merely financial statements data to detect the manager’s fraud risk index and focused on texts of board’s reports for the detection process. The capabilities of data mining and text mining methods for detecting the manager’s fraud risk index using board’s reports were tested in this paper. By comparing CVX and LASSO results, this paper indicated that methods with a binary-dependent variable have more power and are more precise than methods with continuous-dependent variables for detecting fraud.
Keywords: Text mining; Data mining (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:jaarpp:jaar-01-2018-0016
DOI: 10.1108/JAAR-01-2018-0016
Access Statistics for this article
Journal of Applied Accounting Research is currently edited by Associate Professor Orthodoxia Kyriacou
More articles in Journal of Applied Accounting Research from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().