Forecasting nonlinear dependency between cryptocurrencies and foreign exchange markets using dynamic copula: evidence from GAS models
Mehdi Mili and
Ahmed Bouteska
Journal of Risk Finance, 2023, vol. 24, issue 4, 464-482
Abstract:
Purpose - This paper examines and forecasts correlations between cryptocurrencies and major fiat currencies using Generalized Autoregressive Score (GAS) time-varying copulas. The authors examine to which extent the multivariate GAS method captures the volatility persistence and the nonlinear interaction effects between cryptocurrencies and major fiat currencies. Design/methodology/approach - The authors model tail dependence between conventional currencies and Bitcoin utilizing a Glosten-Jagannathan-Runkle Generalized Autoregressive Conditional Heteroscedastic model (GJR-GARCH)-GAS copula specification, which allows detecting the leptokurtic feature and clustering effects of currency returns distribution. Findings - The authors' results show evidence of multiple tail dependence regimes, implying the unsuitability of applying static models to entirely describe the extreme dependence between Bitcoin and fiat currencies. Compared to the most common constant copulas, the authors find that the multivariate GAS copulas better forecast the volatility and dependency between cryptocurrencies and foreign exchange markets. Furthermore, based on the value-at-risk (VaR) and expected shortfall (ES) analyses, the authors show that the multivariate GAS models produce accurate risk measures by adding cryptocurrencies to a portfolio of fiat currencies. Originality/value - This paper has two main contributions to the existing literature on cryptocurrencies. First, the authors empirically examine the tail dependence structure between common conventional currencies and bitcoin using GJR-GARCH GAS copulas which consider the leptokurtic feature and clustering effects of currency returns distribution. Second, by modeling VaR and ES, the authors test the implication of using time-varying models on the performance of currency portfolios, including cryptocurrencies.
Keywords: Forecasting; Cryptocurrency; Exchange rate; Volatility and correlation; Multivariate GAS model; C22; C52; C53; Q47 (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:jrfpps:jrf-04-2022-0074
DOI: 10.1108/JRF-04-2022-0074
Access Statistics for this article
Journal of Risk Finance is currently edited by Nawazish Mirza
More articles in Journal of Risk Finance from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().