EconPapers    
Economics at your fingertips  
 

Forecasting value-at-risk and expected shortfall in emerging market: does forecast combination help?

Trung Hai Le

Journal of Risk Finance, 2024, vol. 25, issue 1, 160-177

Abstract: Purpose - This paper investigates how various strategies for combining forecasts, both simple and optimised approaches, are compared with popular individual risk models in estimating value-at-risk (VaR) and expected shortfall (ES) in emerging market at alternative risk levels. Design/methodology/approach - Using the case study of the Vietnamese stock market, the author produced one-day-ahead VaR and ES forecast from seven individual risk models and ten alternative forecast combinations. Next, the author employed a battery of backtesting procedures and alternative loss functions to evaluate the global predictive accuracy of the different methods. Finally, the author investigated the relative performance over time of VaR and ES forecasts using fluctuation test. Findings - The empirical results indicate that, although combined forecasts have reasonable predictive abilities, they are often outperformed by one individual risk model. Furthermore, the author showed that the complex combining methods with optimised weighting functions do not perform better than simple combining methods. The fluctuation test suggests that the poor performance of combined forecasts is mainly due to their inability to cope with periods of instability. Research limitations/implications - This study reveals the limitation of combining strategies in the one-day-ahead VaR and ES forecasts in emerging markets. A possible direction for further research is to investigate whether this finding holds for multi-day ahead forecasts. Moreover, the inferior performance of combined forecasts during periods of instability motivates further research on the combining strategies that take into account for potential structure breaks in the performance of individual risk models. A potential approach is to improve the individual risk models with macroeconomic variables using a mixed-data sampling approach. Originality/value - First, the authors contribute to the literature on the forecasting combinations for VaR and ES measures. Second, the author explored a wide range of alternative risk models to forecast both VaR and ES with recent data including periods of the COVID-19 pandemic. Although forecast combination strategies have been providing several good results in several fields, the literature of forecast combination in the VaR and ES context is surprisingly limited, especially for emerging market returns. To the best of the author’s knowledge, this is the first study investigating predictive power of combining methods for VaR and ES in an emerging market.

Keywords: Value at risk; Expected shortfall; Forecast combination; C22; E47; G17 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:jrfpps:jrf-06-2023-0137

DOI: 10.1108/JRF-06-2023-0137

Access Statistics for this article

Journal of Risk Finance is currently edited by Nawazish Mirza

More articles in Journal of Risk Finance from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-03-19
Handle: RePEc:eme:jrfpps:jrf-06-2023-0137