Models for predicting default: towards efficient forecasts
Fernando Castagnolo and
Gustavo Ferro
Journal of Risk Finance, 2014, vol. 15, issue 1, 52-70
Abstract:
Purpose - – The purpose of this paper is to assess and compare the forecast ability of existing credit risk models, answering three questions: Can these methods adequately predict default events? Are there dominant methods? Is it safer to rely on a mix of methodologies? Design/methodology/approach - – The authors examine four existing models: O-score, Z-score, Campbell, and Merton distance to default model (MDDM). The authors compare their ability to forecast defaults using three techniques: intra-cohort analysis, power curves and discrete hazard rate models. Findings - – The authors conclude that better predictions demand a mix of models containing accounting and market information. The authors found evidence of the O-score's outperformance relative to the other models. The MDDM alone in the sample is not a sufficient default predictor. But discrete hazard rate models suggest that combining both should enhance default prediction models. Research limitations/implications - – The analysed methods alone cannot adequately predict defaults. The authors found no dominant methods. Instead, it would be advisable to rely on a mix of methodologies, which use complementary information. Practical implications - – Better forecasts demand a mix of models containing both accounting and market information. Originality/value - – The findings suggest that more precise default prediction models can be built by combining information from different sources in reduced-form models and combining default prediction models that can analyze said information.
Keywords: Financial crisis; Efficiency; Credit risk; Empirical analysis; Predicting default models (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:jrfpps:jrf-08-2013-0057
DOI: 10.1108/JRF-08-2013-0057
Access Statistics for this article
Journal of Risk Finance is currently edited by Nawazish Mirza
More articles in Journal of Risk Finance from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().