Learning from Errors While Forecasting Inflation: A Case for Intercept Correction
Muhammad Jahanzeb Malik () and
Muhammad Hanif
International Econometric Review (IER), 2019, vol. 11, issue 1, 24-38
Abstract:
Structural changes are quite common in macroeconomic time series. Moreover, any underlying macroeconomic relationship cannot be correctly specified unless we know the true model. Structural changes in time series and misspecification in empirical model are observed as shifts in the constant of the underlying relationship between the subject variables of interest. Forecasting from such a model assuming 'no structural break' and 'correct model' is tantamount to ignoring important aspects of underlying economy and mostly results in forecast failure(s). Intercept correction (IC) is a method for accommodating such ignored structural break(s) and omitted variable(s). We use a simple model (for July 1991 to March 2016) to forecast inflation for 25 countries and compare its performance with a) the same model with optimal IC, b) the same model with half IC, and c) a random walk model. Optimal IC approach, though computational intensive, outperforms in forecasting next period inflation compared to one from a) the same model without IC, b) the same model with half intercept correction, and c) random walk model without IC. For the particular class of inflation models under study, over the time period specified, 'quarter IC' works best among the fixed IC rules.
Keywords: Forecasting; Structural changes; Intercept correction; Misspecification; Inflation models. (search for similar items in EconPapers)
JEL-codes: C01 C52 C53 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.era.org.tr/makaleler/304468.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:erh:journl:v:11:y:2019:i:1:p:24-38
Access Statistics for this article
International Econometric Review (IER) is currently edited by Asad Zaman
More articles in International Econometric Review (IER) from Econometric Research Association Contact information at EDIRC.
Bibliographic data for series maintained by M. F. Cosar ().