Forecasting Turkish Industrial Production Growth With Static Factor Models
Mahmut Gunay
International Econometric Review (IER), 2015, vol. 7, issue 2, 64-78
Abstract:
In this paper, we forecast industrial production growth for the Turkish economy using static factor models. We evaluate how the performance of the models change based on the number of factors we extract from our data as well as the level of aggregation for the series in the data set. We consider two evaluation samples for the out-of-sample forecasting exercise to assess the stability of the forecasting performance. We find that the effect of the data set size on the forecasting performance is not independent from the number of factors extracted from this data set. Rankings of the models change in different evaluation samples. We conclude that using a dynamic approach to evaluate models from different dimensions is important in the forecasting process.
Keywords: Forecasting; Factor Models; Principal Components. (search for similar items in EconPapers)
JEL-codes: C32 C33 E37 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.era.org.tr/makaleler/31070109.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:erh:journl:v:7:y:2015:i:2:p:64-78
Access Statistics for this article
International Econometric Review (IER) is currently edited by Asad Zaman
More articles in International Econometric Review (IER) from Econometric Research Association Contact information at EDIRC.
Bibliographic data for series maintained by M. F. Cosar ().