EconPapers    
Economics at your fingertips  
 

Hydrides as High Capacity Anodes in Lithium Cells: An Italian “Futuro in Ricerca di Base FIRB-2010” Project

Sergio Brutti, Stefania Panero, Annalisa Paolone, Sara Gatto, Daniele Meggiolaro, Francesco M. Vitucci, Jessica Manzi, David Munaò, Laura Silvestri, Luca Farina and Priscilla Reale
Additional contact information
Sergio Brutti: Dipartimento di Scienze, Università della Basilicata, Potenza 85100, Italy
Stefania Panero: Dipartimento di Chimica, Università di Roma La Sapienza, Rome 24098, Italy
Annalisa Paolone: ISC-CNR (Instituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche), Roma 00185, Italy
Sara Gatto: ISC-CNR (Instituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche), Roma 00185, Italy
Daniele Meggiolaro: ISC-CNR (Instituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche), Roma 00185, Italy
Francesco M. Vitucci: ISC-CNR (Instituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche), Roma 00185, Italy
Jessica Manzi: Dipartimento di Scienze, Università della Basilicata, Potenza 85100, Italy
David Munaò: Dipartimento di Chimica, Università di Roma La Sapienza, Rome 24098, Italy
Laura Silvestri: Dipartimento di Chimica, Università di Roma La Sapienza, Rome 24098, Italy
Luca Farina: Dipartimento di Chimica, Università di Roma La Sapienza, Rome 24098, Italy
Priscilla Reale: ENEA Centro Ricerche Frascati, Frascati 00044, Italy

Challenges, 2017, vol. 8, issue 1, 1-22

Abstract: Automotive and stationary energy storage are among the most recently-proposed and still unfulfilled applications for lithium ion devices. Higher energy, power and superior safety standards, well beyond the present state of the art, are actually required to extend the Li-ion battery market to these challenging fields, but such a goal can only be achieved by the development of new materials with improved performances. Focusing on the negative electrode materials, alloying and conversion chemistries have been widely explored in the last decade to circumvent the main weakness of the intercalation processes: the limitation in capacity to one or at most two lithium atoms per host formula unit. Among all of the many proposed conversion chemistries, hydrides have been proposed and investigated since 2008. In lithium cells, these materials undergo a conversion reaction that gives metallic nanoparticles surrounded by an amorphous matrix of LiH. Among all of the reported conversion materials, hydrides have outstanding theoretical properties and have been only marginally explored, thus making this class of materials an interesting playground for both fundamental and applied research. In this review, we illustrate the most relevant results achieved in the frame of the Italian National Research Project FIRB 2010 Futuro in Ricerca “Hydrides as high capacity anodes in lithium cells” and possible future perspectives of research for this class of materials in electrochemical energy storage devices.

Keywords: hydrides; lithium; batteries (search for similar items in EconPapers)
JEL-codes: A00 C00 Z00 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2078-1547/8/1/8/pdf (application/pdf)
https://www.mdpi.com/2078-1547/8/1/8/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jchals:v:8:y:2017:i:1:p:8-:d:93174

Access Statistics for this article

Challenges is currently edited by Ms. Karen Sun

More articles in Challenges from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jchals:v:8:y:2017:i:1:p:8-:d:93174