Performance Ratio and Degradation Rate Analysis of 10-Year Field Exposed Residential Photovoltaic Installations in the UK and Ireland
Mahmoud Dhimish
Additional contact information
Mahmoud Dhimish: Department of Engineering and Technology, Laboratory of Photovoltaic, University of Huddersfield, Huddersfield HD1 3DH, UK
Clean Technol., 2020, vol. 2, issue 2, 1-14
Abstract:
As photovoltaic (PV) penetration of the power grid increases, accurate predictions of return on investment require accurate analysis of decreased operational power output over time. The degradation rate in PV module performance must be known in order to predict power delivery. This article presents the degradation rates over 10 years for seven different PV systems located in England, Scotland, and Ireland. The lowest PV degradation rates of −0.4% to −0.6%/year were obtained at the Irish PV sites. Higher PV degradation rates of −0.7% to −0.9%/year were found in England, whereas the highest degradation rate of −1.0%/year was observed in relatively cold areas including Aberdeen and Glasgow, located in Scotland. The main reason that the PV systems affected by cold climate conditions had the highest degradation rates was the frequent hoarfrost and heavy snow affecting these PV systems, which considerably affected the reliability and durability of the PV modules and their performance. Additionally, in this article, we analyse the monthly mean performance ratio (PR) for all examined PV systems. It was found that PV systems located in Ireland and England were more reliable compared to those located in Scotland.
Keywords: renewable energy; photovoltaics; degradation; reliability analysis (search for similar items in EconPapers)
JEL-codes: Q2 Q3 Q4 Q5 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2571-8797/2/2/12/pdf (application/pdf)
https://www.mdpi.com/2571-8797/2/2/12/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jcltec:v:2:y:2020:i:2:p:12-183:d:360200
Access Statistics for this article
Clean Technol. is currently edited by Ms. Shary Song
More articles in Clean Technol. from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().