Integrated and Metal Free Synthesis of Dimethyl Carbonate and Glycidol from Glycerol Derived 1,3-Dichloro-2-propanol via CO 2 Capture
Santosh Khokarale,
Ganesh Shelke and
Jyri-Pekka Mikkola
Additional contact information
Santosh Khokarale: Technical Chemistry, Chemical-Biological Centre, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
Ganesh Shelke: Technical Chemistry, Chemical-Biological Centre, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
Jyri-Pekka Mikkola: Technical Chemistry, Chemical-Biological Centre, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
Clean Technol., 2021, vol. 3, issue 4, 1-14
Abstract:
Dimethyl carbonate (DMC) and glycidol are considered industrially important chemical entities and there is a great benefit if these moieties can be synthesized from biomass-derived feedstocks such as glycerol or its derivatives. In this report, both DMC and glycidol were synthesized in an integrated process from glycerol derived 1,3-dichloro-2-propanol and CO 2 through a metal-free reaction approach and at mild reaction conditions. Initially, the chlorinated cyclic carbonate, i.e., 3-chloro-1,2-propylenecarbonate was synthesized using the equivalent interaction of organic superbase 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) and 1,3-dichloro-2-propanol with CO 2 at room temperature. Further, DMC and glycidol were synthesized by the base-catalyzed transesterification of 3-chloro-1,2-propylenecarbonate using DBU in methanol. The synthesis of 3-chloro-1,2-propylenecarbonate was performed in different solvents such as dimethyl sulfoxide (DMSO) and 2-methyltetrahydrofuran (2-Me-THF). In this case, 2-Me-THF further facilitated an easy separation of the product where a 97% recovery of the 3-chloro-1,2-propylenecarbonate was obtained compared to 63% with DMSO. The use of DBU as the base in the transformation of 3-chloro-1,2-propylenecarbonate further facilitates the conversion of the 3-chloro-1,2 propandiol that forms in situ during the transesterification process. Hence, in this synthetic approach, DBU not only eased the CO 2 capture and served as a base catalyst in the transesterification process, but it also performed as a reservoir for chloride ions, which further facilitates the synthesis of 3-chloro-1,2-propylenecarbonate and glycidol in the overall process. The separation of the reaction components proceeded through the solvent extraction technique where a 93 and 89% recovery of the DMC and glycidol, respectively, were obtained. The DBU superbase was recovered from its chlorinated salt, [DBUH][Cl], via a neutralization technique. The progress of the reactions as well as the purity of the recovered chemical species was confirmed by means of the NMR analysis technique. Hence, a single base, as well as a renewable solvent comprising an integrated process approach was carried out under mild reaction conditions where CO 2 sequestration along with industrially important chemicals such as dimethyl carbonate and glycidol were synthesized.
Keywords: carbon dioxide; dimethyl carbonate; glycidol; organic superbase; integrated synthesis (search for similar items in EconPapers)
JEL-codes: Q2 Q3 Q4 Q5 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2571-8797/3/4/41/pdf (application/pdf)
https://www.mdpi.com/2571-8797/3/4/41/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jcltec:v:3:y:2021:i:4:p:41-698:d:642041
Access Statistics for this article
Clean Technol. is currently edited by Ms. Shary Song
More articles in Clean Technol. from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().