Offshore Electrical Grid Layout Optimization for Floating Wind—A Review
Magnus Daniel Kallinger (),
José Ignacio Rapha,
Pau Trubat Casal and
José Luis Domínguez-García
Additional contact information
Magnus Daniel Kallinger: Power Systems Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2a, Sant Adrià de Besòs, 08930 Barcelona, Spain
José Ignacio Rapha: Power Systems Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2a, Sant Adrià de Besòs, 08930 Barcelona, Spain
Pau Trubat Casal: Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain
José Luis Domínguez-García: Power Systems Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2a, Sant Adrià de Besòs, 08930 Barcelona, Spain
Clean Technol., 2023, vol. 5, issue 3, 1-37
Abstract:
Electrical grid layout optimization should consider the placements of turbines and substations and include effects such as wake losses, power losses in cables, availability of different cable types, reliability-based power losses and operational/decommissioning cost besides the initial investment cost. Hence, optimizing the levelized cost of energy is beneficial capturing long-term effects. The main contribution of this review paper is to identify the current works and trends on electrical layout optimization for offshore wind farms as well as to analyze the applicability of the found optimization approaches to commercial-scale floating wind farms which have hardly been investigated so far. Considering multiple subproblems (i.e., micrositing and cabling), simultaneous or nested approaches are advantageous as they avoid sequential optimization of the individual problems. To cope with this combinatorial problem, metaheuristics seems to offer optimal or at least close-to-optimal results while being computationally much less expensive than deterministic methods. It is found that floating wind brings new challenges which have not (or only insufficiently) been considered in present optimization works. This will also be reflected in a higher complexity and thus influence the suitability of applicable optimization techniques. New aspects include the mobility of structures, the configurations and interactions of dynamic cables and station-keeping systems, the increased likelihood of prevailing heterogeneous seabeds introducing priority zones regarding anchor and riser installation, the increased importance of reliability and maintainability due to stricter weather limits, and new floating specific wind farm control methods to reduce power losses. All these facets are crucial to consider when thoroughly optimizing the levelized cost of energy of commercial-scale floating offshore wind farms.
Keywords: floating wind; cabling optimization; layout optimization; dynamic cables; station-keeping systems; power losses; reliability; clustering; deterministics; metaheuristicts (search for similar items in EconPapers)
JEL-codes: Q2 Q3 Q4 Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2571-8797/5/3/39/pdf (application/pdf)
https://www.mdpi.com/2571-8797/5/3/39/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jcltec:v:5:y:2023:i:3:p:39-827:d:1179903
Access Statistics for this article
Clean Technol. is currently edited by Ms. Shary Song
More articles in Clean Technol. from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().