Assessing the Sustainability of the Most Prominent Type of Marine Diesel Engines under the Implementation of the EEXI and CII Regulations
Dionysios Polemis,
Michael Boviatsis () and
Stefanos Chatzinikolaou
Additional contact information
Dionysios Polemis: Department of Maritime Studies, University of Piraeus, 18534 Pireas, Greece
Michael Boviatsis: Department of Maritime Studies, University of Piraeus, 18534 Pireas, Greece
Stefanos Chatzinikolaou: Department of Maritime Studies, University of Piraeus, 18534 Pireas, Greece
Clean Technol., 2023, vol. 5, issue 3, 1-23
Abstract:
The wide spread of the Diesel engine has been instrumental in the development of modern shipping. Marine Diesel engines dominate today as an option for the propulsion of commercial ships. While replacing Diesel engines with alternative propulsion engines is difficult to achieve, companies, in light of the new EEXI regulations, are turning to improvements, such as operating at lower rotational speeds, higher maximum combustion pressures, and more efficient overcrowding systems. Τhe purpose of this research paper is (i) to present the basic operating principles of marine Diesel engines, (ii) to study the main differences between electronically controlled Diesel engines and their mechanically controlled counterparts, and (iii) to evaluate their performance under newly introduced IMO’s EEXI regulations. Thus, after comparing Wärtsilä RTA and WinGD WX, the paper concluded that WinGD WX, being electronically controlled, will perform more effectively under new EEXI regulations, as it offers (i) reduced fuel consumption in low-load mode, (ii) zero-smoke emission at all operating speeds, (iii) very stable operation at low speed, (iv) more straightforward engine setup leading to less maintenance, (v) more extended periods between maintenance, mainly due to better load distribution between cylinders and more perfect combustion. From a regulatory perspective, the new limitations installed by the newly implemented EEXI and CII regulations will cause fewer implications in electronically controlled engines, while from an economic standpoint, the electronically controlled engines decrease OPEX and require fewer personnel, due to their efficiency at low loads and overall flexibility.
Keywords: marine diesel engines; Wärtsilä RTA; WinGD WX; EEXI; CII (search for similar items in EconPapers)
JEL-codes: Q2 Q3 Q4 Q5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2571-8797/5/3/53/pdf (application/pdf)
https://www.mdpi.com/2571-8797/5/3/53/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jcltec:v:5:y:2023:i:3:p:53-1066:d:1228540
Access Statistics for this article
Clean Technol. is currently edited by Ms. Shary Song
More articles in Clean Technol. from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().