Biodegradation of 17α-Ethinylestradiol by Strains of Aeromonas Genus Isolated from Acid Mine Drainage
Tânia Luz Palma and
Maria Clara Costa ()
Additional contact information
Tânia Luz Palma: Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
Maria Clara Costa: Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
Clean Technol., 2024, vol. 6, issue 1, 1-24
Abstract:
17α-ethinylestradiol (EE2), a synthetically derived analogue of endogenous estrogen, is widely employed as a hormonal contraceptive and is recognized as a highly hazardous emerging pollutant, causing acute and chronic toxic effects on both aquatic and terrestrial organisms. It has been included in the initial Water Watch List. The aim of this study was to isolate bacteria from consortia recovered from mine sediments and acid mine drainage samples, both considered extreme environments, with the ability to degrade EE2. From the most promising consortia, isolates affiliated with the Aeromonas, Rhizobium , and Paraburkholderia genera were obtained, demonstrating the capability of growing at 50 mg/L EE2. Subsequently, these isolates were tested with 9 mg/L of EE2 as the sole carbon source. Among the isolated strains, Aeromonas salmonicida MLN-TP7 exhibited the best performance, efficiently degrading EE2 (95 ± 8%) and reaching concentrations of this compound below the limits of detection within 7 and 9 days. The final metabolites obtained are in accordance with those of the TCA cycle; this may indicate EE2 mineralization. As far as is known, Aeromonas salmonicida was isolated for the first time and identified in acid mine drainage, demonstrating its capacity to degrade EE2, making it a promising candidate for bioaugmentation and suggesting its possible applicability in low pH environments.
Keywords: acid mine drainage; extremophile microorganisms; biodegradation; 17?-ethinylestradiol; metabolites (search for similar items in EconPapers)
JEL-codes: Q2 Q3 Q4 Q5 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2571-8797/6/1/8/pdf (application/pdf)
https://www.mdpi.com/2571-8797/6/1/8/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jcltec:v:6:y:2024:i:1:p:8-139:d:1331444
Access Statistics for this article
Clean Technol. is currently edited by Ms. Shary Song
More articles in Clean Technol. from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().