EconPapers    
Economics at your fingertips  
 

CBIS-DDSM-R: A Curated Radiomic Feature Dataset for Breast Cancer Classification

Erika Sánchez-Femat, Carlos E. Galván-Tejada, Jorge I. Galván-Tejada, Hamurabi Gamboa-Rosales, Huizilopoztli Luna-García, Luis Alberto Flores-Chaires, Javier Saldívar-Pérez, Rafael Reveles-Martínez () and José M. Celaya-Padilla ()
Additional contact information
Erika Sánchez-Femat: Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
Carlos E. Galván-Tejada: Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
Jorge I. Galván-Tejada: Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
Hamurabi Gamboa-Rosales: Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
Huizilopoztli Luna-García: Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
Luis Alberto Flores-Chaires: Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
Javier Saldívar-Pérez: Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
Rafael Reveles-Martínez: Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
José M. Celaya-Padilla: Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico

Data, 2025, vol. 10, issue 11, 1-13

Abstract: Early and accurate breast cancer detection is critical for patient outcomes. The Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) has been instrumental for computer-aided diagnosis (CAD) systems. However, the lack of a standardized preprocessing pipeline and consistent metadata has limited its utility for reproducible quantitative imaging or radiomics. This paper introduces CBIS-DDSM-R, an open-source, radiomics-ready extension of the original dataset. It provides an automated pipeline for preprocessing mammograms and extracts a standardized set of 93 radiomics features per lesion, adhering to Image Biomarker Standardisation Initiative (IBSI) guidelines using PyRadiomics. The resulting dataset combines clinical and radiomics data into a unified format, offering a robust benchmark for developing and validating reproducible radiomics models for breast cancer characterization.

Keywords: CBIS-DDSM; breast cancer; mammography; radiomics; Medical Imaging Dataset; lesion segmentation; deep learning (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2306-5729/10/11/179/pdf (application/pdf)
https://www.mdpi.com/2306-5729/10/11/179/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:10:y:2025:i:11:p:179-:d:1787088

Access Statistics for this article

Data is currently edited by Ms. Becky Zhang

More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-08
Handle: RePEc:gam:jdataj:v:10:y:2025:i:11:p:179-:d:1787088