An Open Database of the Internal and Surface Temperatures of a Reinforced-Concrete Slab-on-I-Beam Section
Pedro Cavadia,
José M. Benjumea (),
Oscar Begambre,
Edison Osorio and
María A. Mantilla
Additional contact information
Pedro Cavadia: Escuela de Ingeniería Civil, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
José M. Benjumea: Escuela de Ingeniería Civil, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Oscar Begambre: Escuela de Ingeniería Civil, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Edison Osorio: Facultad de Ingeniería Civil, Universidad Antonio Nariño, Bogotá 111321, Colombia
María A. Mantilla: Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Data, 2025, vol. 10, issue 2, 1-12
Abstract:
Due to climate change, the temperature monitoring of reinforced-concrete (RC) structures is becoming critical for preventive maintenance and extending their lifespan. Significant temperature variations in RC elements can affect their natural frequencies and modulus of elasticity or generate abnormal stress levels, potentially leading to structural damage. Data from thermal monitoring systems are invaluable for testing and validating numerical methodologies for estimating internal thermal responses and aiding in prevention/maintenance decision making. Despite its importance, few experimental outdoor data on the internal and external temperatures of concrete structures are available. This study presents a comprehensive dataset from a 120-day temperature-monitoring campaign on a 1.2 m long reinforced-concrete slab-on-I-beam model under tropical conditions in Bucaramanga, Colombia. The monitoring system measured the internal temperatures at 40 points using embedded thermocouples, while the surface temperatures were recorded with handheld and drone-mounted thermal cameras. Simultaneously, the ambient temperature, solar radiation, rainfall, wind velocity, and other parameters were monitored using a weather station. The instrumentation ensured the synchronization and high spatial resolution of the thermal data. The data, collected at 30 min intervals, are openly available in CSV format, offering valuable resources for validating numerical models, studying thermal gradients, and enhancing structural health-monitoring frameworks.
Keywords: structural health monitoring (SHM); thermal monitoring; drone; VANT; thermocouples; girder; internal temperature; surface temperature; vertical thermal gradient (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2306-5729/10/2/21/pdf (application/pdf)
https://www.mdpi.com/2306-5729/10/2/21/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:10:y:2025:i:2:p:21-:d:1583295
Access Statistics for this article
Data is currently edited by Ms. Cecilia Yang
More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().