Big Data Analytics Framework for Decision-Making in Sports Performance Optimization
Dan Cristian Mănescu ()
Additional contact information
Dan Cristian Mănescu: Academy of Economic Sciences Bucharest, 010374 Bucharest, Romania
Data, 2025, vol. 10, issue 7, 1-29
Abstract:
The rapid proliferation of wearable sensors and advanced tracking technologies has revolutionized data collection in elite sports, enabling continuous monitoring of athletes’ physiological and biomechanical states. This study proposes a comprehensive big data analytics framework that integrates data acquisition, processing, analytics, and decision support, demonstrated through synthetic datasets in football, basketball, and athletics case scenarios, modeled to represent typical data patterns and decision-making workflows observed in elite sport environments. Analytical methods, including gradient boosting classifiers, logistic regression, and multilayer perceptron models, were employed to predict injury risk, optimize in-game tactical decisions, and personalize sprint mechanics training. Key results include a 12% reduction in hamstring injury rates in football, a 16% improvement in clutch decision-making accuracy in basketball, and an 8% decrease in 100 m sprint times among athletes. The framework’s visualization tools and alert systems supported actionable insights for coaches and medical staff. Challenges such as data quality, privacy compliance, and model interpretability are addressed, with future research focusing on edge computing, federated learning, and augmented reality integration for enhanced real-time feedback. This study demonstrates the potential of integrated big data analytics to transform sports performance optimization, offering a reproducible and ethically sound platform for advancing personalized, data-driven athlete management.
Keywords: big data; real-time analytics; decision-making; sport; performance optimization (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2306-5729/10/7/116/pdf (application/pdf)
https://www.mdpi.com/2306-5729/10/7/116/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:10:y:2025:i:7:p:116-:d:1701302
Access Statistics for this article
Data is currently edited by Ms. Cecilia Yang
More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().