A Dataset and Experimental Evaluation of a Parallel Conflict Detection Solution for Model-Based Diagnosis
Jessica Janina Cabezas-Quinto,
Cristian Vidal-Silva (),
Jorge Serrano-Malebrán () and
Nicolás Márquez ()
Additional contact information
Jessica Janina Cabezas-Quinto: Facultad de Ciencias e Ingeniería, Universidad Estatal de Milagro, Milagro 090103, Ecuador
Cristian Vidal-Silva: Departamento de Visualización Interactiva y Realidad Virtual, Facultad de Ingeniería, Universidad de Talca, Av. Lircay S/N, Talca 3460000, Chile
Jorge Serrano-Malebrán: Facultad de Ingeniería y Negocios, Universidad de las Américas, Av. Manuel Montt 948 Providencia, Santiago 7500000, Chile
Nicolás Márquez: Escuela de Ingeniería Comercial, Facultad de Economía y Negocios, Universidad Santo Tomás, Talca 3460000, Chile
Data, 2025, vol. 10, issue 9, 1-14
Abstract:
This article presents a dataset and experimental evaluation of a parallelized variant of Junker’s QuickXPlain algorithm, designed to efficiently compute minimal conflict sets in constraint-based diagnosis tasks. The dataset includes performance benchmarks, conflict traces, and solution metadata for a wide range of configurable diagnosis problems based on real-world and synthetic CSP instances. Our parallel variant leverages multicore architectures to reduce computation time while preserving the completeness and minimality guarantees of QuickXPlain. All evaluations were conducted using reproducible scripts and parameter configurations, enabling comparison across different algorithmic strategies. The provided dataset can be used to replicate experiments, analyze scalability under varying problem sizes, and serve as a baseline for future improvements in conflict explanation algorithms. The full dataset, codebase, and benchmarking scripts are openly available and documented to promote transparency and reusability in constraint-based diagnostic systems research.
Keywords: parallel computating; conflict detection; constraint satisfaction problems; diagnosis; QuickXPlain; benchmarking; reproducible evaluation; minimal conflict sets; open dataset (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2306-5729/10/9/139/pdf (application/pdf)
https://www.mdpi.com/2306-5729/10/9/139/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:10:y:2025:i:9:p:139-:d:1737262
Access Statistics for this article
Data is currently edited by Ms. Becky Zhang
More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().