EconPapers    
Economics at your fingertips  
 

Regionalization of a Landscape-Based Hazard Index of Malaria Transmission: An Example of the State of Amapá, Brazil

Zhichao Li, Thibault Catry, Nadine Dessay, Helen Da Costa Gurgel, Cláudio Aparecido de Almeida, Christovam Barcellos and Emmanuel Roux
Additional contact information
Zhichao Li: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
Thibault Catry: ESPACE-DEV, UMR 228 IRD/UM/UR/UG, Institut de Recherche pour le Développement (IRD), 500 rue Jean-François Breton, Montpellier 34000, France
Nadine Dessay: ESPACE-DEV, UMR 228 IRD/UM/UR/UG, Institut de Recherche pour le Développement (IRD), 500 rue Jean-François Breton, Montpellier 34000, France
Helen Da Costa Gurgel: Department of Geography, University of Brasilia, 70910-900 Brasilia, Brazil
Cláudio Aparecido de Almeida: National Institute for Space Research (INPE)—Image Processing Division, Av. dos Astronautas, 1758, 12227-010 São José dos Campos, Brazil
Christovam Barcellos: Institute of Scientific and Technological Communication and Information in Health (ICICT), Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil 4365, Manguinhos, Rio de Janeiro RJ 21045-900, Brazil
Emmanuel Roux: ESPACE-DEV, UMR 228 IRD/UM/UR/UG, Institut de Recherche pour le Développement (IRD), 500 rue Jean-François Breton, Montpellier 34000, France

Data, 2017, vol. 2, issue 4, 1-11

Abstract: Identifying and assessing the relative effects of the numerous determinants of malaria transmission, at different spatial scales and resolutions, is of primary importance in defining control strategies and reaching the goal of the elimination of malaria. In this context, based on a knowledge-based model, a normalized landscape-based hazard index ( NLHI ) was established at a local scale, using a 10 m spatial resolution forest vs. non-forest map, landscape metrics and a spatial moving window. Such an index evaluates the contribution of landscape to the probability of human-malaria vector encounters, and thus to malaria transmission risk. Since the knowledge-based model is tailored to the entire Amazon region, such an index might be generalized at large scales for establishing a regional view of the landscape contribution to malaria transmission. Thus, this study uses an open large-scale land use and land cover dataset (i.e., the 30 m TerraClass maps) and proposes an automatic data-processing chain for implementing NLHI at large-scale. First, the impact of coarser spatial resolution (i.e., 30 m) on NLHI values was studied. Second, the data-processing chain was established using R language for customizing the spatial moving window and computing the landscape metrics and NLHI at large scale. This paper presents the results in the State of Amapá, Brazil. It offers the possibility of monitoring a significant determinant of malaria transmission at regional scale.

Keywords: malaria; landscape-based hazard index; large-scale; Amazon (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2306-5729/2/4/37/pdf (application/pdf)
https://www.mdpi.com/2306-5729/2/4/37/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:2:y:2017:i:4:p:37-:d:117385

Access Statistics for this article

Data is currently edited by Ms. Cecilia Yang

More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jdataj:v:2:y:2017:i:4:p:37-:d:117385