HANDY: A Benchmark Dataset for Context-Awareness via Wrist-Worn Motion Sensors
Koray Açıcı,
Çağatay Berke Erdaş,
Tunç Aşuroğlu and
Hasan Oğul
Additional contact information
Koray Açıcı: Department of Computer Engineering, Başkent University, Bağlıca Kampüsü, Fatih Sultan Mahallesi Eskişehir Yolu 18 Km, Ankara 06790, Turkey
Çağatay Berke Erdaş: Department of Computer Engineering, Başkent University, Bağlıca Kampüsü, Fatih Sultan Mahallesi Eskişehir Yolu 18 Km, Ankara 06790, Turkey
Tunç Aşuroğlu: Department of Computer Engineering, Başkent University, Bağlıca Kampüsü, Fatih Sultan Mahallesi Eskişehir Yolu 18 Km, Ankara 06790, Turkey
Hasan Oğul: Department of Computer Engineering, Başkent University, Bağlıca Kampüsü, Fatih Sultan Mahallesi Eskişehir Yolu 18 Km, Ankara 06790, Turkey
Data, 2018, vol. 3, issue 3, 1-11
Abstract:
Being aware of a personal context is a promising task for various applications, such as biometry, human-computer interactions, telemonitoring, remote care, mobile marketing and security. The task can be formally defined as the classification of a person being considered into one of predefined labels, which may correspond to his/her identity, gender, physical properties, the activity that he/she performs or any other attribute related to the environment being involved. Here, we offer a solution to the problem with a set of multiple motion sensors worn on the wrist. We first provide an annotated and publicly accessible benchmark set for context-awareness through wrist-worn sensors, namely, accelerometers, magnetometers and gyroscopes. Second, we present an evaluation of recent computational methods for two relevant tasks: activity recognition and person identification from hand movements. Finally, we show that fusion of two motion sensors (i.e., accelerometers and magnetometers), leads to higher accuracy for both tasks, compared with the individual use of each sensor type.
Keywords: activity recognition; person identification; sensor data analysis; dataset; context-awareness; wearable computing (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2306-5729/3/3/24/pdf (application/pdf)
https://www.mdpi.com/2306-5729/3/3/24/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:3:y:2018:i:3:p:24-:d:154112
Access Statistics for this article
Data is currently edited by Ms. Cecilia Yang
More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().