Linking Synthetic Populations to Household Geolocations: A Demonstration in Namibia
Dana R. Thomson,
Lieke Kools and
Warren C. Jochem
Additional contact information
Dana R. Thomson: Flowminder Foundation, SE-11355 Stockholm, Sweden
Lieke Kools: Department of Economics, Leiden University, 2311 EZ Leiden, The Netherlands
Warren C. Jochem: Flowminder Foundation, SE-11355 Stockholm, Sweden
Data, 2018, vol. 3, issue 3, 1-19
Abstract:
Whether evaluating gridded population dataset estimates (e.g., WorldPop, LandScan) or household survey sample designs, a population census linked to residential locations are needed. Geolocated census microdata data, however, are almost never available and are thus best simulated. In this paper, we simulate a close-to-reality population of individuals nested in households geolocated to realistic building locations. Using the R simPop package and ArcGIS, multiple realizations of a geolocated synthetic population are derived from the Namibia 2011 census 20% microdata sample, Namibia census enumeration area boundaries, Namibia 2013 Demographic and Health Survey (DHS), and dozens of spatial covariates derived from publicly available datasets. Realistic household latitude-longitude coordinates are manually generated based on public satellite imagery. Simulated households are linked to latitude-longitude coordinates by identifying distinct household types with multivariate k-means analysis and modelling a probability surface for each household type using Random Forest machine learning methods. We simulate five realizations of a synthetic population in Namibia’s Oshikoto region, including demographic, socioeconomic, and outcome characteristics at the level of household, woman, and child. Comparison of variables in the synthetic population were made with 2011 census 20% sample and 2013 DHS data by primary sampling unit/enumeration area. We found that synthetic population variable distributions matched observed observations and followed expected spatial patterns. We outline a novel process to simulate a close-to-reality microdata census geolocated to realistic building locations in a low- or middle-income country setting to support spatial demographic research and survey methodological development while avoiding disclosure risk of individuals.
Keywords: simulation; census; simPop; LMIC (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2306-5729/3/3/30/pdf (application/pdf)
https://www.mdpi.com/2306-5729/3/3/30/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:3:y:2018:i:3:p:30-:d:162841
Access Statistics for this article
Data is currently edited by Ms. Cecilia Yang
More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().