A High-Resolution Global Gridded Historical Dataset of Climate Extreme Indices
Malcolm N. Mistry
Additional contact information
Malcolm N. Mistry: Department of Economics, Ca’ Foscari University of Venice, 30121 Venice, Italy
Data, 2019, vol. 4, issue 1, 1-11
Abstract:
Climate extreme indices (CEIs) are important metrics that not only assist in the analysis of regional and global extremes in meteorological events, but also aid climate modellers and policymakers in the assessment of sectoral impacts. Global high-spatial-resolution CEI datasets derived from quality-controlled historical observations, or reanalysis data products are scarce. This study introduces a new high-resolution global gridded dataset of CEIs based on sub-daily temperature and precipitation data from the Global Land Data Assimilation System (GLDAS). The dataset called “CEI_0p25_1970_2016” includes 71 annual (and in some cases monthly) CEIs at 0.25 ? × 0.25 ? gridded resolution, covering 47 years over the period 1970–2016. The data of individual indices are publicly available for download in the commonly used Network Common Data Form 4 (NetCDF4) format. Potential applications of CEI_0p25_1970_2016 presented here include the assessment of sectoral impacts (e.g., Agriculture, Health, Energy, and Hydrology), as well as the identification of hot spots (clusters) showing similar historical spatial patterns of high/low temperature and precipitation extremes. CEI_0p25_1970_2016 fills gaps in existing CEI datasets by encompassing not only more indices, but also by being the only comprehensive global gridded CEI data available at high spatial resolution.
Keywords: climate extreme indices (CEIs); ClimPACT; GLDAS; Expert Team on Climate Change Detection and Indices (ETCCDI); Expert Team on Sector-specific Climate Indices (ET-SCI) (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2306-5729/4/1/41/pdf (application/pdf)
https://www.mdpi.com/2306-5729/4/1/41/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:4:y:2019:i:1:p:41-:d:213455
Access Statistics for this article
Data is currently edited by Ms. Cecilia Yang
More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().