EconPapers    
Economics at your fingertips  
 

Visualization of Myocardial Strain Pattern Uniqueness with Respect to Activation Time and Contractility: A Computational Study

Borut Kirn
Additional contact information
Borut Kirn: Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia

Data, 2019, vol. 4, issue 2, 1-7

Abstract: Speckle tracking echography is used to measure myocardial strain patterns in order to assess the state of myocardial tissue. Because electro-mechanical coupling in myocardial tissue is complex and nonlinear, and because of the measurement errors the uniqueness of strain patterns is questionable. In this study, the uniqueness of strain patterns was visualized in order to revel characteristics that may improve their interpretation. A computational model of sarcomere mechanics was used to generate a database of 1681 strain patterns, each simulated with a different set of sarcomere parameters: time of activation (TA) and contractility (Con). TA and Con ranged from −100 ms to 100 ms and 2% to 202% in 41 steps respectively, thus forming a two-dimensional 41 × 41 parameter space. Uniqueness of the strain pattern was assessed by using a cohort of similar strain patterns defined by a measurement error. The cohort members were then visualized in the parameter space. Each cohort formed one connected component (or blob) in the parameter space; however, large differences in the shape, size, and eccentricity of the blobs were found for different regions in the parameter space. The blobs were elongated along the TA direction (±50 ms) when contractility was low, and along the Con direction (±50%) when contractility was high. The uniqueness of the strain patterns can be assessed and visualized in the parameter space. The strain patterns in the studied database are not degenerated because a cohort of similar strain patterns forms only one connected blob in the parameter space. However, the elongation of the blobs means that estimations of TA when contractility is low and of Con when contractility is high have high uncertainty.

Keywords: signal uniqueness; visualization; myocardial strain; tissue properties; computational modeling; synthetic data (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2306-5729/4/2/79/pdf (application/pdf)
https://www.mdpi.com/2306-5729/4/2/79/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:4:y:2019:i:2:p:79-:d:234206

Access Statistics for this article

Data is currently edited by Ms. Cecilia Yang

More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jdataj:v:4:y:2019:i:2:p:79-:d:234206