EconPapers    
Economics at your fingertips  
 

Indoor Environment Dataset to Estimate Room Occupancy

Andreé Vela, Joanna Alvarado-Uribe and Hector G. Ceballos
Additional contact information
Andreé Vela: School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico
Joanna Alvarado-Uribe: School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico
Hector G. Ceballos: School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico

Data, 2021, vol. 6, issue 12, 1-12

Abstract: The estimation of occupancy is a crucial contribution to achieve improvements in energy efficiency. The drawback of data or incomplete data related to occupancy in enclosed spaces makes it challenging to develop new models focused on estimating occupancy with high accuracy. Furthermore, considerable variation in the monitored spaces also makes it difficult to compare the results of different approaches. This dataset comprises the indoor environmental information (pressure, altitude, humidity, and temperature) and the corresponding occupancy level for two different rooms: (1) a fitness gym and (2) a living room. The fitness gym data were collected for six days between 18 September and 2 October 2019, obtaining 10,125 objects with a 1 s resolution according to the following occupancy levels: low (2442 objects), medium (5325 objects), and high (2358 objects). The living room data were collected for 11 days between 14 May and 4 June 2020, obtaining 295,823 objects with a 1 s resolution, according to the following occupancy levels: empty (50,978 objects), low (202,613 objects), medium (35,410 objects), and high (6822 objects). Additionally, the number of fans turned on is provided for the living room data. The data are publicly available in the Mendeley Data repository. This dataset can be used to train and compare different machine learning, deep learning, and physical models for estimating occupancy at enclosed spaces.

Keywords: occupancy estimation; environmental variables; enclosed spaces; indirect approach (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2306-5729/6/12/133/pdf (application/pdf)
https://www.mdpi.com/2306-5729/6/12/133/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:6:y:2021:i:12:p:133-:d:700931

Access Statistics for this article

Data is currently edited by Ms. Cecilia Yang

More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jdataj:v:6:y:2021:i:12:p:133-:d:700931