EconPapers    
Economics at your fingertips  
 

The Impact of Global Structural Information in Graph Neural Networks Applications

Davide Buffelli and Fabio Vandin
Additional contact information
Davide Buffelli: Department of Information Engineering, University of Padova, 35131 Padova, Italy
Fabio Vandin: Department of Information Engineering, University of Padova, 35131 Padova, Italy

Data, 2022, vol. 7, issue 1, 1-20

Abstract: Graph Neural Networks (GNNs) rely on the graph structure to define an aggregation strategy where each node updates its representation by combining information from its neighbours. A known limitation of GNNs is that, as the number of layers increases, information gets smoothed and squashed and node embeddings become indistinguishable, negatively affecting performance. Therefore, practical GNN models employ few layers and only leverage the graph structure in terms of limited, small neighbourhoods around each node. Inevitably, practical GNNs do not capture information depending on the global structure of the graph. While there have been several works studying the limitations and expressivity of GNNs, the question of whether practical applications on graph structured data require global structural knowledge or not remains unanswered. In this work, we empirically address this question by giving access to global information to several GNN models, and observing the impact it has on downstream performance. Our results show that global information can in fact provide significant benefits for common graph-related tasks. We further identify a novel regularization strategy that leads to an average accuracy improvement of more than 5 % on all considered tasks.

Keywords: graph neural networks; graph representation learning; deep learning; representation learning; graphs (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2306-5729/7/1/10/pdf (application/pdf)
https://www.mdpi.com/2306-5729/7/1/10/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:7:y:2022:i:1:p:10-:d:724328

Access Statistics for this article

Data is currently edited by Ms. Cecilia Yang

More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jdataj:v:7:y:2022:i:1:p:10-:d:724328