Unsupervised Few Shot Key Frame Extraction for Cow Teat Videos
Youshan Zhang,
Matthias Wieland and
Parminder S. Basran
Additional contact information
Youshan Zhang: Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
Matthias Wieland: Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
Parminder S. Basran: Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
Data, 2022, vol. 7, issue 5, 1-21
Abstract:
A novel method of monitoring the health of dairy cows in large-scale dairy farms is proposed via image-based analysis of cows on rotary-based milking platforms, where deep learning is used to classify the extent of teat-end hyperkeratosis. The videos can be analyzed to segment the teats for feature analysis, which can then be used to assess the risk of infections and other diseases. This analysis can be performed more efficiently by using the key frames of each cow as they pass through the image frame. Extracting key frames from these videos would greatly simplify this analysis, but there are several challenges. First, data collection in the farm setting is harsh, resulting in unpredictable temporal key frame positions; empty, obfuscated, or shifted images of the cow’s teats; frequently empty stalls due to challenges with herding cows into the parlor; and regular interruptions and reversals in the direction of the parlor. Second, supervised learning requires expensive and time-consuming human annotation of key frames, which is impractical in large commercial dairy farms housing thousands of cows. Unsupervised learning methods rely on large frame differences and often suffer low performance. In this paper, we propose a novel unsupervised few-shot learning model which extracts key frames from large (∼21,000 frames) video streams. Using a simple L1 distance metric that combines both image and deep features between each unlabeled frame and a few (32) labeled key frames, a key frame selection mechanism, and a quality check process, key frames can be extracted with sufficient accuracy (F score 63.6%) and timeliness (<10 min per 21,000 frames) for commercial dairy farm setting demands.
Keywords: key frame extraction; dairy cows; unsupervised few shot learning (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2306-5729/7/5/68/pdf (application/pdf)
https://www.mdpi.com/2306-5729/7/5/68/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:7:y:2022:i:5:p:68-:d:822101
Access Statistics for this article
Data is currently edited by Ms. Cecilia Yang
More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().