EconPapers    
Economics at your fingertips  
 

A Tourist-Based Framework for Developing Digital Marketing for Small and Medium-Sized Enterprises in the Tourism Sector in Saudi Arabia

Rishaa Abdulaziz Alnajim () and Bahjat Fakieh
Additional contact information
Rishaa Abdulaziz Alnajim: Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Bahjat Fakieh: Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Data, 2023, vol. 8, issue 12, 1-33

Abstract: Social media has become an essential tool for travel planning, with tourists increasingly using it to research destinations, book accommodation, and make travel arrangements. However, little is known about how tourists use social media for travel planning and what factors influence their intentions to use social media for this purpose. This thesis aims to understand tourists’ intentions to use social media for travel planning. Specifically, it investigates the factors influencing tourists’ intentions to use social media for planning travel to Saudi Arabia. It develops a machine learning (ML) classification model to assist Saudi tourism SMEs in creating effective digital marketing strategies for social media platforms. A survey was conducted with 573 tourists interested in visiting Saudi Arabia, using the Design Science Research (DSR) approach. The findings support the tourist-based theoretical framework, showing that perceived usefulness (PU), perceived ease of use (PEOU), satisfaction (SAT), marketing-generated content (MGC), and user-generated content (UGC) significantly impact tourists’ intentions to use social media for travel planning. Tourists’ characteristics and visit characteristics influenced their intentions to use MGC but not UGC. The tourist-based ML classification model, developed using the LinearSVC algorithm, achieved an accuracy of 99% when evaluated using the K-Fold Cross-Validation (KF-CV) technique. The findings of this study have several implications for Saudi tourism SMEs. First, the results suggest that SMEs should focus on developing social media content that is perceived as useful, easy to use, and satisfying. Second, the findings suggest that SMEs should focus on using MGC in their social media marketing campaigns. Third, the results suggest that SMEs should tailor their social media marketing campaigns to the characteristics of their target tourists. This study contributes to the literature on tourism marketing and social media by providing a better understanding of how tourists use social media for travel planning. Saudi tourism SMEs can use the findings of this study to develop more effective digital marketing strategies for social media platforms.

Keywords: digital marketing; machine learning; Saudi tourism; SMEs; travel planning (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2306-5729/8/12/179/pdf (application/pdf)
https://www.mdpi.com/2306-5729/8/12/179/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:8:y:2023:i:12:p:179-:d:1289488

Access Statistics for this article

Data is currently edited by Ms. Cecilia Yang

More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jdataj:v:8:y:2023:i:12:p:179-:d:1289488