EconPapers    
Economics at your fingertips  
 

A Preliminary Investigation of a Single Shock Impact on Italian Mortality Rates Using STMF Data: A Case Study of COVID-19

Maria Francesca Carfora () and Albina Orlando ()
Additional contact information
Maria Francesca Carfora: Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Naples, Italy
Albina Orlando: Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Naples, Italy

Data, 2023, vol. 8, issue 6, 1-12

Abstract: Mortality shocks, such as pandemics, threaten the consolidated longevity improvements, confirmed in the last decades for the majority of western countries. Indeed, just before the COVID-19 pandemic, mortality was falling for all ages, with a different behavior according to different ages and countries. It is indubitable that the changes in the population longevity induced by shock events, even transitory ones, affecting demographic projections, have financial implications in public spending as well as in pension plans and life insurance. The Short Term Mortality Fluctuations (STMF) data series, providing data of all-cause mortality fluctuations by week within each calendar year for 38 countries worldwide, offers a powerful tool to timely analyze the effects of the mortality shock caused by the COVID-19 pandemic on Italian mortality rates. This dataset, recently made available as a new component of the Human Mortality Database, is described and techniques for the integration of its data with the historical mortality time series are proposed. Then, to forecast mortality rates, the well-known stochastic mortality model proposed by Lee and Carter in 1992 is first considered, to be consistent with the internal processing of the Human Mortality Database, where exposures are estimated by the Lee–Carter model; empirical results are discussed both on the estimation of the model coefficients and on the forecast of the mortality rates. In detail, we show how the integration of the yearly aggregated STMF data in the HMD database allows the Lee–Carter model to capture the complex evolution of the Italian mortality rates, including the higher lethality for males and older people, in the years that follow a large shock event such as the COVID-19 pandemic. Finally, we discuss some key points concerning the improvement of existing models to take into account mortality shocks and evaluate their impact on future mortality dynamics.

Keywords: stochastic mortality models; Human Mortality Database; mortality shocks; COVID-19 (search for similar items in EconPapers)
JEL-codes: C8 C80 C81 C82 C83 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2306-5729/8/6/107/pdf (application/pdf)
https://www.mdpi.com/2306-5729/8/6/107/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jdataj:v:8:y:2023:i:6:p:107-:d:1170369

Access Statistics for this article

Data is currently edited by Ms. Cecilia Yang

More articles in Data from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jdataj:v:8:y:2023:i:6:p:107-:d:1170369