Multivariate Stochastic Volatility Modeling via Integrated Nested Laplace Approximations: A Multifactor Extension
João Pedro Coli de Souza Monteneri Nacinben and
Márcio Laurini
Additional contact information
João Pedro Coli de Souza Monteneri Nacinben: Department of Economics, FEARP-University of São Paulo, Ribeirão Preto 14040-905, Brazil
Econometrics, 2024, vol. 12, issue 1, 1-28
Abstract:
This study introduces a multivariate extension to the class of stochastic volatility models, employing integrated nested Laplace approximations (INLA) for estimation. Bayesian methods for estimating stochastic volatility models through Markov Chain Monte Carlo (MCMC) can become computationally burdensome or inefficient as the dataset size and problem complexity increase. Furthermore, issues related to chain convergence can also arise. In light of these challenges, this research aims to establish a computationally efficient approach for estimating multivariate stochastic volatility models. We propose a multifactor formulation estimated using the INLA methodology, enabling an approach that leverages sparse linear algebra and parallelization techniques. To evaluate the effectiveness of our proposed model, we conduct in-sample and out-of-sample empirical analyses of stock market index return series. Furthermore, we provide a comparative analysis with models estimated using MCMC, demonstrating the computational efficiency and goodness of fit improvements achieved with our approach.
Keywords: multivariate stochastic volatility; integrated nested laplace approximations; Bayesian methods; computational efficiency (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2225-1146/12/1/5/pdf (application/pdf)
https://www.mdpi.com/2225-1146/12/1/5/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jecnmx:v:12:y:2024:i:1:p:5-:d:1341433
Access Statistics for this article
Econometrics is currently edited by Ms. Jasmine Liu
More articles in Econometrics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().