Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
Lin Xue and
Liqun Wang
Additional contact information
Lin Xue: Department of Statistics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Econometrics, 2024, vol. 12, issue 3, 1-14
Abstract:
Regularized regression methods have attracted much attention in the literature, mainly due to its application in high-dimensional variable selection problems. Most existing regularization methods assume that the predictors are directly observed and precisely measured. It is well known that in a low-dimensional regression model if some covariates are measured with error, then the naive estimators that ignore the measurement error are biased and inconsistent. However, the impact of measurement error in regularized estimation procedures is not clear. For example, it is known that the ordinary least squares estimate of the regression coefficient in a linear model is attenuated towards zero and, on the other hand, the variance of the observed surrogate predictor is inflated. Therefore, it is unclear how the interaction of these two factors affects the selection outcome. To correct for the measurement error effects, some researchers assume that the measurement error covariance matrix is known or can be estimated using external data. In this paper, we propose the regularized instrumental variable method for generalized linear measurement error models. We show that the proposed approach yields a consistent variable selection procedure and root-n consistent parameter estimators. Extensive finite sample simulation studies show that the proposed method performs satisfactorily in both linear and generalized linear models. A real data example is provided to further demonstrate the usage of the method.
Keywords: regularization method; penalized estimation; measurement error; instrumental variable; generalized linear model; variable selection; consistency; oracle property (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2225-1146/12/3/21/pdf (application/pdf)
https://www.mdpi.com/2225-1146/12/3/21/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jecnmx:v:12:y:2024:i:3:p:21-:d:1434351
Access Statistics for this article
Econometrics is currently edited by Ms. Jasmine Liu
More articles in Econometrics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().