Forecasting of GDP Growth in the South Caucasian Countries Using Hybrid Ensemble Models
Gaetano Perone () and
Manuel A. Zambrano-Monserrate
Additional contact information
Gaetano Perone: Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi 10, 56124 Pisa, Italy
Manuel A. Zambrano-Monserrate: Universidad Espíritu Santo, Samborondón 0901952, Ecuador
Econometrics, 2025, vol. 13, issue 3, 1-23
Abstract:
This study aimed to forecast the gross domestic product (GDP) of the South Caucasian nations (Armenia, Azerbaijan, and Georgia) by scrutinizing the accuracy of various econometric methodologies. This topic is noteworthy considering the significant economic development exhibited by these countries in the context of recovery post COVID-19. The seasonal autoregressive integrated moving average (SARIMA), exponential smoothing state space (ETS) model, neural network autoregressive (NNAR) model, and trigonometric exponential smoothing state space model with Box–Cox transformation, ARMA errors, and trend and seasonal components (TBATS), together with their feasible hybrid combinations, were employed. The empirical investigation utilized quarterly GDP data at market prices from Q1-2010 to Q2-2024. According to the results, the hybrid models significantly outperformed the corresponding single models, handling the linear and nonlinear components of the GDP time series more effectively. Rolling-window cross-validation showed that hybrid ETS-NNAR-TBATS for Armenia, hybrid ETS-NNAR-SARIMA for Azerbaijan, and hybrid ETS-SARIMA for Georgia were the best-performing models. The forecasts also suggest that Georgia is likely to record the strongest GDP growth over the projection horizon, followed by Armenia and Azerbaijan. These findings confirm that hybrid models constitute a reliable technique for forecasting GDP in the South Caucasian countries. This region is not only economically dynamic but also strategically important, with direct implications for policy and regional planning.
Keywords: GDP forecasting; hybrid ensemble models; machine learning; rolling-origin cross-validation; South Caucasus (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2225-1146/13/3/35/pdf (application/pdf)
https://www.mdpi.com/2225-1146/13/3/35/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jecnmx:v:13:y:2025:i:3:p:35-:d:1746454
Access Statistics for this article
Econometrics is currently edited by Ms. Jasmine Liu
More articles in Econometrics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().