EconPapers    
Economics at your fingertips  
 

Detecting and Measuring Nonlinearity

Rachidi Kotchoni

Econometrics, 2018, vol. 6, issue 3, 1-27

Abstract: This paper proposes an approach to measure the extent of nonlinearity of the exposure of a financial asset to a given risk factor. The proposed measure exploits the decomposition of a conditional expectation into its linear and nonlinear components. We illustrate the method with the measurement of the degree of nonlinearity of a European style option with respect to the underlying asset. Next, we use the method to identify the empirical patterns of the return-risk trade-off on the SP500. The results are strongly supportive of a nonlinear relationship between expected return and expected volatility. The data seem to be driven by two regimes: one regime with a positive return-risk trade-off and one with a negative trade-off.

Keywords: conditional expectation; nonlinearity; orthogonal polynomials; return-risk trade-off (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2225-1146/6/3/37/pdf (application/pdf)
https://www.mdpi.com/2225-1146/6/3/37/ (text/html)

Related works:
Working Paper: Detecting and Measuring Nonlinearity (2018)
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jecnmx:v:6:y:2018:i:3:p:37-:d:162892

Access Statistics for this article

Econometrics is currently edited by Ms. Jasmine Liu

More articles in Econometrics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jecnmx:v:6:y:2018:i:3:p:37-:d:162892