Estimation of Treatment Effects in Repeated Public Goods Experiments
Jianning Kong and
Donggyu Sul ()
Additional contact information
Jianning Kong: School of Economics, Shandong University, Shandong 250100, China
Econometrics, 2018, vol. 6, issue 4, 1-24
Abstract:
This paper provides a new statistical model for repeated voluntary contribution mechanism games. In a repeated public goods experiment, contributions in the first round are cross-sectionally independent simply because subjects are randomly selected. Meanwhile, contributions to a public account over rounds are serially and cross-sectionally correlated. Furthermore, the cross-sectional average of the contributions across subjects usually decreases over rounds. By considering this non-stationary initial condition—the initial contribution has a different distribution from the rest of the contributions—we model statistically the time varying patterns of the average contribution in repeated public goods experiments and then propose a simple but efficient method to test for treatment effects. The suggested method has good finite sample performance and works well in practice.
Keywords: repeated public goods games; asymptotic treatment effects; trend regression (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2225-1146/6/4/43/pdf (application/pdf)
https://www.mdpi.com/2225-1146/6/4/43/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jecnmx:v:6:y:2018:i:4:p:43-:d:179081
Access Statistics for this article
Econometrics is currently edited by Ms. Jasmine Liu
More articles in Econometrics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().