Bayesian Analysis of Coefficient Instability in Dynamic Regressions
Emanuela Ciapanna and
Marco Taboga
Additional contact information
Marco Taboga: Directorate General for Economics, Statistics and Research, Banca d’Italia, Via Nazionale 91, 00184 Roma, Italy
Econometrics, 2019, vol. 7, issue 3, 1-32
Abstract:
This paper deals with instability in regression coefficients. We propose a Bayesian regression model with time-varying coefficients (TVC) that allows to jointly estimate the degree of instability and the time-path of the coefficients. Thanks to the computational tractability of the model and to the fact that it is fully automatic, we are able to run Monte Carlo experiments and analyze its finite-sample properties. We find that the estimation precision and the forecasting accuracy of the TVC model compare favorably to those of other methods commonly employed to deal with parameter instability. A distinguishing feature of the TVC model is its robustness to mis-specification: Its performance is also satisfactory when regression coefficients are stable or when they experience discrete structural breaks. As a demonstrative application, we used our TVC model to estimate the exposures of S&P 500 stocks to market-wide risk factors: We found that a vast majority of stocks had time-varying exposures and the TVC model helped to better forecast these exposures.
Keywords: coefficients’ instability; TVC model; Bayesian regression; Monte Carlo experiments (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2225-1146/7/3/29/pdf (application/pdf)
https://www.mdpi.com/2225-1146/7/3/29/ (text/html)
Related works:
Working Paper: Bayesian analysis of coefficient instability in dynamic regressions (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jecnmx:v:7:y:2019:i:3:p:29-:d:243958
Access Statistics for this article
Econometrics is currently edited by Ms. Jasmine Liu
More articles in Econometrics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().