EconPapers    
Economics at your fingertips  
 

Second-Order Least Squares Estimation in Nonlinear Time Series Models with ARCH Errors

Mustafa Salamh and Liqun Wang
Additional contact information
Mustafa Salamh: Department of Statistics, Cairo University, Giza 12613, Egypt

Econometrics, 2021, vol. 9, issue 4, 1-17

Abstract: Many financial and economic time series exhibit nonlinear patterns or relationships. However, most statistical methods for time series analysis are developed for mean-stationary processes that require transformation, such as differencing of the data. In this paper, we study a dynamic regression model with nonlinear, time-varying mean function, and autoregressive conditionally heteroscedastic errors. We propose an estimation approach based on the first two conditional moments of the response variable, which does not require specification of error distribution. Strong consistency and asymptotic normality of the proposed estimator is established under strong-mixing condition, so that the results apply to both stationary and mean-nonstationary processes. Moreover, the proposed approach is shown to be superior to the commonly used quasi-likelihood approach and the efficiency gain is significant when the (conditional) error distribution is asymmetric. We demonstrate through a real data example that the proposed method can identify a more accurate model than the quasi-likelihood method.

Keywords: nonlinear dynamic model; ARCH error; mixing process; mean nonstationarity; second order least squares; semiparametric efficiency; econometric modeling; financial time series (search for similar items in EconPapers)
JEL-codes: B23 C C00 C01 C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2225-1146/9/4/41/pdf (application/pdf)
https://www.mdpi.com/2225-1146/9/4/41/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jecnmx:v:9:y:2021:i:4:p:41-:d:689472

Access Statistics for this article

Econometrics is currently edited by Ms. Jasmine Liu

More articles in Econometrics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jecnmx:v:9:y:2021:i:4:p:41-:d:689472