EconPapers    
Economics at your fingertips  
 

Low-Load Limit in a Diesel-Ignited Gas Engine

Richard Hutter, Johannes Ritzmann, Philipp Elbert and Christopher Onder
Additional contact information
Richard Hutter: Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland
Johannes Ritzmann: Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland
Philipp Elbert: Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland
Christopher Onder: Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland

Energies, 2017, vol. 10, issue 10, 1-27

Abstract: The lean-burn capability of the Diesel-ignited gas engine combined with its potential for high efficiency and low CO 2 emissions makes this engine concept one of the most promising alternative fuel converters for passenger cars. Instead of using a spark plug, the ignition relies on the compression-ignited Diesel fuel providing ignition centers for the homogeneous air-gas mixture. In this study the amount of Diesel is reduced to the minimum amount required for the desired ignition. The low-load operation of such an engine is known to be challenging, as hydrocarbon (HC) emissions rise. The objective of this study is to develop optimal low-load operation strategies for the input variables equivalence ratio and exhaust gas recirculation (EGR) rate. A physical engine model helps to investigate three important limitations, namely maximum acceptable HC emissions, minimal CO 2 reduction, and minimal exhaust gas temperature. An important finding is the fact that the high HC emissions under low-load and lean conditions are a consequence of the inability to raise the gas equivalence ratio resulting in a poor flame propagation. The simulations on the various low-load strategies reveal the conflicting demand of lean combustion with low CO 2 emissions and stoichiometric operation with low HC emissions, as well as the minimal feasible dual-fuel load of 3.2 bar brake mean effective pressure.

Keywords: low-load strategy; dual-fuel; supervisory control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/10/1450/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/10/1450/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:10:p:1450-:d:112765

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1450-:d:112765