EconPapers    
Economics at your fingertips  
 

Comparative Study on Uni- and Bi-Directional Fluid Structure Coupling of Wind Turbine Blades

Mesfin Belayneh Ageze, Yefa Hu and Huachun Wu
Additional contact information
Mesfin Belayneh Ageze: School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China
Yefa Hu: School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China
Huachun Wu: School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China

Energies, 2017, vol. 10, issue 10, 1-21

Abstract: The current trends of wind turbine blade designs are geared towards a longer and slender blade with high flexibility, exhibiting complex aeroelastic loadings and instability issues, including flutter; in this regard, fluid-structure interaction (FSI) plays a significant role. The present article will conduct a comparative study between uni-directional and bi-directional fluid-structural coupling models for a horizontal axis wind turbine. A full-scale, geometric copy of the NREL 5MW blade with simplified material distribution is considered for simulation. Analytical formulations of the governing relations with appropriate approximation are highlighted, including turbulence model, i.e., Shear Stress Transport (SST) k- ? . These analytical relations are implemented using Multiphysics package ANSYS employing Fluent module (Computational Fluid Dynamics (CFD)-based solver) for the fluid domain and Transient Structural module (Finite Element Analysis-based solver) for the structural domain. ANSYS system coupling module also is configured to model the two fluid-structure coupling methods. The rated operational condition of the blade for a full cycle rotation is considered as a comparison domain. In the bi-directional coupling model, the structural deformation alters the angle of attack from the designed values, and by extension the flow pattern along the blade span; furthermore, the tip deflection keeps fluctuating whilst it tends to stabilize in the uni-directional coupling model.

Keywords: wind turbine; fluid structure interaction (FSI); aeroelasticity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/10/1499/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/10/1499/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:10:p:1499-:d:113433

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1499-:d:113433