Determination of Klinkenberg Permeability Conditioned to Pore-Throat Structures in Tight Formations
Guangfeng Liu,
Yaoxing Bai,
Zhaoqi Fan and
Daihong Gu
Additional contact information
Guangfeng Liu: CMOE Key Laboratory of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China
Yaoxing Bai: Shanxi Natural Gas Limited Company, Taiyuan, Shanxi 030002, China
Zhaoqi Fan: Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
Daihong Gu: CMOE Key Laboratory of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China
Energies, 2017, vol. 10, issue 10, 1-17
Abstract:
This paper has developed a pragmatic technique to efficiently and accurately determine the Klinkenberg permeability for tight formations with different pore-throat structures. Firstly, the authors use steady-state experiments to measure the Klinkenberg permeability of 56 tight core samples under different mean pore pressures and confining pressures. Secondly, pressure-controlled mercury injection (PMI) experiments and thin-section analyses are conducted to differentiate pore-throat structures. After considering capillary pressure curve, pore types, throat size, particle composition, and grain size, the pore-throat structure in the target tight formation was classified into three types: a good sorting and micro-fine throat (GSMFT) type, a moderate sorting and micro-fine throat (MSMFT) type, and a bad sorting and micro throat (BSMT) type. This study found that a linear relationship exists between the Klinkenberg permeability and measured gas permeability for all three types of pore-throat structures. Subsequently, three empirical equations are proposed, based on 50 core samples of data, to estimate the Klinkenberg permeability by using the measured gas permeability and mean pore pressure for each type of pore-throat structure. In addition, the proposed empirical equations can generate accurate estimates of the Klinkenberg permeability with a relative error of less than 5% in comparison to its measured value. The application of the proposed empirical equations to the remaining six core samples has demonstrated that it is necessary to use an appropriate equation to determine the Klinkenberg permeability of a specific type of pore-throat structure. Consequently, the newly developed technique is proven to be qualified for accurately determining the Klinkenberg permeability of tight formations in a timely manner.
Keywords: tight formation; Klinkenberg permeability; gas permeability; pore-throat structure (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/10/1575/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/10/1575/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:10:p:1575-:d:114742
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().