Development of a Numerical Approach to Simulate Compressed Air Energy Storage Subjected to Cyclic Internal Pressure
Song-Hun Chong
Additional contact information
Song-Hun Chong: High Speed Railroad Systems Research Center, Korea Railroad Research Institute, 176, Cheoldo bangmulgwan-ro, Uiwang-si, Gyeonggi-do 437-757, Korea
Energies, 2017, vol. 10, issue 10, 1-12
Abstract:
This paper analyzes the long-term response of unlined energy storage located at shallow depth to improve the distance between a wind farm and storage. The numerical approach follows the hybrid scheme that combined a mechanical constitutive model to extract stress and strains at the first cycle and polynomial-type strain accumulation functions to track the progressive plastic deformation. In particular, the strain function includes the fundamental features that requires simulating the long-term response of geomaterials: volumetric strain (terminal void ratio) and shear strain (shakedown and ratcheting), the strain accumulation rate, and stress obliquity. The model is tested with a triaxial strain boundary condition under different stress obliquities. The unlined storage subjected to cyclic internal stress is simulated with different storage geometries and stress amplitudes that play a crucial role in estimating the long-term mechanical stability of underground storage. The simulations present the evolution of ground surface, yet their incremental rate approaches towards a terminal void ratio. With regular and smooth displacement fields for the large number of cycles, the inflection point is estimated with the previous surface settlement model.
Keywords: long-term response of unlined energy storage; cyclic internal stress; internal stress module; terminal void ratio; settlement; inflection point (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/10/1620/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/10/1620/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:10:p:1620-:d:115213
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().