EconPapers    
Economics at your fingertips  
 

Prospects of Mixtures as Working Fluids in Real-Gas Brayton Cycles

Costante Mario Invernizzi
Additional contact information
Costante Mario Invernizzi: Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy

Energies, 2017, vol. 10, issue 10, 1-15

Abstract: This paper discusses the thermodynamic characteristics of the closed Brayton cycles in which the compression is placed near the critical point of the working fluid. Under these conditions, the specific volumes of the fluid during the compression are a fraction of the corresponding values under ideal gas conditions, and the cycle performances improve significantly, mainly at moderate top temperatures. As the heat is discharged at about the critical temperature, the choice of the correct working fluid is strictly correlated with the environmental temperature or with the temperature of potential heat users. To resort to mixtures greatly extend the choice of the right working fluid, allowing a continuous variation of the critical temperature. These cycles have a high power density, and the use of ordinary turbomachinery is accompanied by high capacities (tens of megawatts). In the low power range, microturbines or reciprocating engines are required. One important constraint on the choice of the right working fluid is its thermochemical stability that restricts the operative temperatures. Among the organic compounds, the maximum safe temperatures are limited to about 400 °C and, forecasting high temperature applications, it could be interesting to explore the potentiality of the inorganic compounds as secondary fluids in binary mixtures.

Keywords: closed Brayton cycles; supercritical gas; real-gas effects; organic working fluids; distributed energy production (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/10/1649/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/10/1649/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:10:p:1649-:d:115673

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1649-:d:115673