Control Applied to a Reciprocating Internal Combustion Engine Test Bench under Transient Operation: Impact on Engine Performance and Pollutant Emissions
Ismael Payo,
Luis Sánchez,
Enrique Caño and
Octavio Armas
Additional contact information
Ismael Payo: Escuela de Ingeniería Industrial, Campus de Excelencia Internacional en Energía y Medioambiente, Universidad de Castilla La Mancha, Edificio Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain
Luis Sánchez: Escuela de Ingeniería Industrial, Campus de Excelencia Internacional en Energía y Medioambiente, Universidad de Castilla La Mancha, Edificio Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain
Enrique Caño: Escuela de Ingeniería Industrial, Campus de Excelencia Internacional en Energía y Medioambiente, Universidad de Castilla La Mancha, Edificio Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain
Octavio Armas: Escuela de Ingeniería Industrial, Campus de Excelencia Internacional en Energía y Medioambiente, Universidad de Castilla La Mancha, Edificio Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain
Energies, 2017, vol. 10, issue 11, 1-17
Abstract:
This work presents a methodology to adjust the electronic control system of a reciprocating internal combustion engine test bench and the effect of the control parameters on emissions produced by the engine under two extreme situations: unadjusted and adjusted, both under transient operation. The aim is to provide a tuning guide to those in charge of this equipment not needed to be experts in control engineering. The proposed methodology covers from experimental plant modelling to control parameters determination and experimental validation. The methodology proposed includes the following steps: (i) Understanding of test bench and mathematical modeling; (ii) Model parameters identification; (iii) Control law proposal and tuning from simulation and (iv) Experimental validation. The work has been completed by presenting a comparative experimental study about the effect of the test bench control parameters on engine performance profiles (engine speed, engine torque and relative fuel air ratio) and on regulated gaseous emissions (nitrogen oxides and hydrocarbons concentrations) and the profile of number of particles emitted. The whole process, including experimental validation, has been carried out in a test bench composed of a turbocharged, with common rail injection system, light duty diesel engine coupled to a Schenck E-90 eddy current dynamometric brake and its related Schenk X-act control electronics. The work demonstrates the great effect of the test bench control tuning under transient operation on performance and emissions produced by the engine independently of the engine accelerator position demanded before and after the test bench tuning.
Keywords: PID control; test stand; diesel engine; dynamics; methodology; dynamometer braking system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/11/1690/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/11/1690/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:11:p:1690-:d:116314
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().