Modelling of Spouted and Spout-Fluid Beds: Key for Their Successful Scale Up
Cristina Moliner,
Filippo Marchelli,
Barbara Bosio and
Elisabetta Arato
Additional contact information
Cristina Moliner: Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi di Genova, Via Opera Pia 15, 16145 Genova, Italy
Filippo Marchelli: Faculty of Sciences and Technology, Libera Università di Bolzano, Piazza Università 5, 39100 Bolzano, Italy
Barbara Bosio: Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi di Genova, Via Opera Pia 15, 16145 Genova, Italy
Elisabetta Arato: Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi di Genova, Via Opera Pia 15, 16145 Genova, Italy
Energies, 2017, vol. 10, issue 11, 1-39
Abstract:
The development of robust mathematical models could provide the necessary tools for a more rapid, efficient, and reliable spouted bed technology development. Computer simulations can be very useful to aid this design and scale-up process: firstly, they can contribute to obtain a fundamental insight into their complex dynamic behavior by understanding the elementary physical principles such as drag, friction, dissipation etc.; secondly, the simulations can be used as a design tool where the ultimate goal is to have a numerical model with predictive capabilities for gas-particle flows at engineering scale. Clearly, one single simulation method will not be able to achieve this goal, but a hierarchy of methods modelling phenomena on different length and time scales can achieve this. The most fruitful approach will be when they are simultaneously followed, so that they can mutually benefit from each other. In this sense, this paper presents a review of the current state of the art of modelling on spouted and spout-fluid beds through an analysis of recent literature following a multiscale approach (molecular and particle, lab, plant and industrial scale). The main features of the different scales together with their current limits are discussed and specific topics are highlighted as paths that still need to be explored. In summary, the paper aims to define the theoretical setline and the basis of improvement that would lead to a robust multiscale model with solid links between micro and macroscopic phenomena. If done with the correct balance between accuracy and computational costs it will gear SB towards their reliable and successful implementation.
Keywords: spouted and spout-fluid bed; modelling; multiscale approach; scale-up; CFD; multiphase flows (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/11/1729/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/11/1729/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:11:p:1729-:d:116747
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().