Evaluation of Electrical Tree Degradation in Cross-Linked Polyethylene Cable Using Weibull Process of Propagation Time
Donguk Jang and
Seonghee Park
Additional contact information
Donguk Jang: Metropolitan Transportation Research Center, Korea Railroad Research Institute, Uiwang 16105, Korea
Seonghee Park: ICT Fusion Green Energy Center, Wonkwang University, Iksan 54538, Korea
Energies, 2017, vol. 10, issue 11, 1-14
Abstract:
The main purpose of this paper is to evaluate electrical tree degradation for cross-linked polyethylene (XLPE) cable insulation for three difference models. In order to show the distribution characteristics using phase resolved partial discharge (PD), we acquire data by using a PD detecting system. These acquired data presented four 2D distributions such as phase angle-average discharge distribution, pulse magnitude-pulse number distribution, phase angle-pulse number distribution, and phase angle-maximum discharge derived from the distribution of PD. From the analysis of these distributions, each of the tree models are proved to hold its unique characteristics and the results were then applied as basic specific qualities. In order to evaluate the progresses of an electrical tree, we proposed methods using parameters by means of Weibull distribution to the time of tree propagation. We measured the time of tree propagation for 16 specimens of each artificial tree models from initiation stage, middle stage, and final stage respectively, using these breakdown data, we estimated the shape parameter, scale parameter, and mean time to failure. It is possible to analyze the difference in lifetime between the initial stage, the middle stage, and the final stage, and could be used to predict the lifetime of an XLPE cable from these results.
Keywords: partial discharge; Weibull analysis; XLPE cable; electric tree; propagation time (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/11/1789/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/11/1789/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:11:p:1789-:d:117900
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().