Interlink Converter with Linear Quadratic Regulator Based Current Control for Hybrid AC/DC Microgrid
Dwi Riana Aryani,
Jung-Su Kim and
Hwachang Song
Additional contact information
Dwi Riana Aryani: Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
Jung-Su Kim: Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
Hwachang Song: Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
Energies, 2017, vol. 10, issue 11, 1-26
Abstract:
A hybrid alternate current/direct current (AC/DC) microgrid consists of an AC subgrid and a DC subgrid, and the subgrids are connected through the interlink bidirectional AC/DC converter. In the stand-alone operation mode, it is desirable that the interlink bidirectional AC/DC converter manages proportional power sharing between the subgrids by transferring power from the under-loaded subgrid to the over-loaded one. In terms of system security, the interlink bidirectional AC/DC converter takes an important role, so proper control strategies need to be established. In addition, it is assumed that a battery energy storage system is installed in one subgrid, and the coordinated control of interlink bidirectional AC/DC converter and battery energy storage system converter is required so that the power sharing scheme between subgrids becomes more efficient. For the purpose of designing a tracking controller for the power sharing by interlink bidirectional AC/DC converter in a hybrid AC/DC microgrid, a droop control method generates a power reference for interlink bidirectional AC/DC converter based on the deviation of the system frequency and voltages first and then interlink bidirectional AC/DC converter needs to transfer the power reference to the over-loaded subgrid. For efficiency of this power transferring, a linear quadratic regulator with exponential weighting for the current regulation of interlink bidirectional AC/DC converter is designed in such a way that the resulting microgrid can operate robustly against various uncertainties and the power sharing is carried out quickly. Simulation results show that the proposed interlink bidirectional AC/DC converter control strategy provides robust and efficient power sharing scheme between the subgrids without deteriorating the secure system operation.
Keywords: battery energy storage system; hybrid AC/DC microgrid; interlink bidirectional AC/DC converter; linear quadratic regulator; power sharing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/11/1799/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/11/1799/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:11:p:1799-:d:118110
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().