Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight
Stephen M. Neill and
Apostolos Pesyridis
Additional contact information
Stephen M. Neill: Aerospace Engineering Graduate, College of Engineering and Design, Brunel University London, Uxbridge UB8 3PN, UK
Apostolos Pesyridis: Metapulsion Engineering Ltd, 2C Eastbury Avenue, Northwood HA6 3LG, UK
Energies, 2017, vol. 10, issue 11, 1-22
Abstract:
Through Computational Fluid Dynamics and validation, an optimal scramjet combustor has been designed based on twin-strut Hydrogen injection to sustain flight at a desired speed of Mach 8. An investigation undertaken into the efficacy of supersonic combustion through various means of injection saw promising results for Hydrogen-based systems, whereby strut-style injectors were selected over transverse injectors based on their pressure recovery performance and combustive efficiency. The final configuration of twin-strut injectors provided robust combustion and a stable region of net thrust (1873 kN) in the nozzle. Using fixed combustor inlet parameters and injection equivalence ratio, the finalized injection method advanced to the early stages of two-dimensional (2-D) and three-dimensional (3-D) scramjet engine integration. The overall investigation provided a feasible supersonic combustion system, such that Mach 8 sustained cruise could be achieved by the aircraft concept in a computational design domain.
Keywords: supersonic combustion; hypersonic; scramjet; propulsion; fuel injection; computational fluid dynamics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/11/1900/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/11/1900/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:11:p:1900-:d:119486
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().