EconPapers    
Economics at your fingertips  
 

Perforated Thermal Mass Shading: An Approach to Winter Solar Shading and Energy, Shading and Daylighting Performance

Lingjiang Huang and Shuangping Zhao
Additional contact information
Lingjiang Huang: Department of Architecture, Wuhan University, Wuhan 430072, China
Shuangping Zhao: Department of Architecture, Wuhan University, Wuhan 430072, China

Energies, 2017, vol. 10, issue 12, 1-18

Abstract: Direct solar irradiance may cause thermal discomfort, even in winter when the ambient temperature is low and especially for high-altitude locations with a high intensity of solar radiation. Thus winter solar shading might be required and, if used, must achieve a balance between the prevention of the transmittance of solar irradiance, the utilization of passive solar heat and the supply of adequate natural daylighting. These considerations render conventional solutions of solar shading inapplicable in the winter. In this paper, a novel approach to perforated thermal mass shading for winter is reported and examined. The impacts of the perforated percentage and the opening positions of this shading device on energy, shading and daylighting performance were assessed for south- and west-facing orientations. A range of perforated percentages and vertical and horizontal positions were tested using simulations by Energyplus and Daysim. Our results indicate that the proposed perforated thermal mass shading is efficient for the integrated performance of shading, daylighting and energy savings in the south-facing orientation, while it achieves acceptable performance in shading and daylighting in the west-facing orientation for a high-altitude cold climate.

Keywords: perforated thermal mass; winter solar shading; daylighting; energy performance; high altitudes (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/1955/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/1955/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:1955-:d:120327

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1955-:d:120327