Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs
Fei Wang,
Baoman Li,
Yichi Zhang and
Shicheng Zhang
Additional contact information
Fei Wang: Department of Petroleum Engineering, China University of Petroleum, Beijing 102200, China
Baoman Li: Department of Petroleum Engineering, China University of Petroleum, Beijing 102200, China
Yichi Zhang: Department of Petroleum Engineering, China University of Petroleum, Beijing 102200, China
Shicheng Zhang: Department of Petroleum Engineering, China University of Petroleum, Beijing 102200, China
Energies, 2017, vol. 10, issue 12, 1-17
Abstract:
The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC) model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1) water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2) gas transport induced by both hydraulic pressure driven convection and adsorption; (3) heat transport driven by thermal convection and conduction; and (4) natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the predominant leak-off mechanisms for slickwater fracturing-fluids in hydraulically fractured shale gas reservoirs.
Keywords: shale gas; water leak-off; thermo-hydro-mechanical-chemical model; multi-field coupling; numerical simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/1960/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/1960/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:1960-:d:120192
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().