EconPapers    
Economics at your fingertips  
 

Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs

Fei Wang, Baoman Li, Yichi Zhang and Shicheng Zhang
Additional contact information
Fei Wang: Department of Petroleum Engineering, China University of Petroleum, Beijing 102200, China
Baoman Li: Department of Petroleum Engineering, China University of Petroleum, Beijing 102200, China
Yichi Zhang: Department of Petroleum Engineering, China University of Petroleum, Beijing 102200, China
Shicheng Zhang: Department of Petroleum Engineering, China University of Petroleum, Beijing 102200, China

Energies, 2017, vol. 10, issue 12, 1-17

Abstract: The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC) model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1) water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2) gas transport induced by both hydraulic pressure driven convection and adsorption; (3) heat transport driven by thermal convection and conduction; and (4) natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the predominant leak-off mechanisms for slickwater fracturing-fluids in hydraulically fractured shale gas reservoirs.

Keywords: shale gas; water leak-off; thermo-hydro-mechanical-chemical model; multi-field coupling; numerical simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/1960/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/1960/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:1960-:d:120192

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1960-:d:120192