EconPapers    
Economics at your fingertips  
 

Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA

Dongxiao Niu, Yi Liang and Wei-Chiang Hong ()
Additional contact information
Dongxiao Niu: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Yi Liang: School of Economics and Management, North China Electric Power University, Beijing 102206, China

Energies, 2017, vol. 10, issue 12, 1-18

Abstract: As a kind of clean and renewable energy, wind power is winning more and more attention across the world. Regarding wind power utilization, safety is a core concern and such concern has led to many studies on predicting wind speed. To obtain a more accurate prediction of the wind speed, this paper adopts a new hybrid forecasting model, combing empirical mode decomposition (EMD) and the general regression neural network (GRNN) optimized by the fruit fly optimization algorithm (FOA). In this new model, the original wind speed series are first decomposed into a collection of intrinsic mode functions (IMFs) and a residue. Next, the inherent relationship (partial correlation) of the datasets is analyzed, and the results are then used to select the input for the forecasting model. Finally, the GRNN with the FOA to optimize the smoothing factor is used to predict each sub-series. The mean absolute percentage error of the forecasting results in two cases are respectively 8.95% and 9.87%, suggesting that the hybrid approach outperforms the compared models, which provides guidance for future wind speed forecasting.

Keywords: wind speed forecasting; empirical mode decomposition; general regression neural network; fruit fly optimization algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/2001/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/2001/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:2001-:d:121273

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-30
Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2001-:d:121273