EconPapers    
Economics at your fingertips  
 

A Single-Phase Multilevel PV Generation System with an Improved Ripple Correlation Control MPPT Algorithm

Manel Hammami and Gabriele Grandi
Additional contact information
Manel Hammami: Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40136 Bologna, Italy
Gabriele Grandi: Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40136 Bologna, Italy

Energies, 2017, vol. 10, issue 12, 1-19

Abstract: The implementation of maximum power point tracking (MPPT) schemes by the ripple correlation control (RCC) algorithm is presented in this paper. A reference is made to single-phase single-stage multilevel photovoltaic (PV) generation systems, when the inverter input variables (PV voltage and PV current) have multiple low-frequency (ripple) harmonics. The harmonic analysis is carried out with reference to a multilevel configuration consisting of an H-bridge inverter and level doubling network (LDN) cell, leading to the multilevel inverter having double the output voltage levels as compared to the basic H-bridge inverter topology (i.e., five levels vs. three levels). The LDN cell is basically a half-bridge fed by a floating capacitor, with self-balancing voltage capability. The multilevel configuration introduces additional PV voltage and current low-frequency harmonics, perturbing the basic implementation of the RCC scheme (based on the second harmonic component), leading to malfunctioning. The proposed RCC algorithm employs the PV current and voltage harmonics at a specific frequency for the estimation of the voltage derivative of power dP / dV (or dI / dV ), driving the PV operating point toward the maximum power point (MPP) in a faster and more precise manner. The steady-state and transient performances of the proposed RCC-MPPT schemes have been preliminarily tested and compared using MATLAB/Simulink. Results have been verified by experimental tests considering the whole multilevel PV generation system, including real PV modules, multilevel insulated-gate bipolar transistor (IGBT) inverters, and utility grids.

Keywords: photovoltaic; multilevel inverter; single-phase converter; maximum power point tracking (MPPT); ripple correlation control (RCC); harmonics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/2037/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/2037/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:2037-:d:121418

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2037-:d:121418