EconPapers    
Economics at your fingertips  
 

Performance Prediction of Centrifugal Compressor for Drop-In Testing Using Low Global Warming Potential Alternative Refrigerants and Performance Test Codes

Joo Hoon Park, Youhwan Shin and Jin Taek Chung
Additional contact information
Joo Hoon Park: Department of Mechanical Engineering, Graduate School of Korea University, 02841 Seoul, Korea
Youhwan Shin: Centre for Urban Energy Research, Korea Institute of Science and Technology, 02792 Seoul, Korea
Jin Taek Chung: Department of Mechanical Engineering, Korea University, 02841 Seoul, Korea

Energies, 2017, vol. 10, issue 12, 1-21

Abstract: As environmental regulations to stall global warming are strengthened around the world, studies using newly developed low global warming potential (GWP) alternative refrigerants are increasing. In this study, substitute refrigerants, R-1234ze (E) and R-1233zd (E), were used in the centrifugal compressor of an R-134a 2-stage centrifugal chiller with a fixed rotational speed. Performance predictions and thermodynamic analyses of the centrifugal compressor for drop-in testing were performed. A performance prediction method based on the existing ASME PTC-10 performance test code was proposed. The proposed method yielded the expected operating area and operating point of the centrifugal compressor with alternative refrigerants. The thermodynamic performance of the first and second stages of the centrifugal compressor was calculated as the polytropic state. To verify the suitability of the proposed method, the drop-in test results of the two alternative refrigerants were compared. The predicted operating range based on the permissible deviation of ASME PTC-10 confirmed that the temperature difference was very small at the same efficiency. Because the drop-in test of R-1234ze (E) was performed within the expected operating range, the centrifugal compressor using R-1234ze (E) is considered well predicted. However, the predictions of the operating point and operating range of R-1233zd (E) were lower than those of the drop-in test. The proposed performance prediction method will assist in understanding thermodynamic performance at the expected operating point and operating area of a centrifugal compressor using alternative gases based on limited design and structure information.

Keywords: operating range; operating point; centrifugal compressor; low-GWP alternative refrigerant; R-1234ze (E); R-1233zd (E); drop-in test; performance test code (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/2043/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/2043/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:2043-:d:121414

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2043-:d:121414