An Improved Continuous-Time Model Predictive Control of Permanent Magnetic Synchronous Motors for a Wide-Speed Range
Dandan Su,
Chengning Zhang and
Yugang Dong
Additional contact information
Dandan Su: National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
Chengning Zhang: National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
Yugang Dong: National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
Energies, 2017, vol. 10, issue 12, 1-18
Abstract:
This paper proposes an improved continuous-time model predictive control (CTMPC) of permanent magnetic synchronous motors (PMSMs) for a wide-speed range, including the constant torque region and the flux-weakening (FW) region. In the constant torque region, the mathematic models of PMSMs in dq-axes are decoupled without the limitation of DC-link voltage. However, in the FW region, the mathematic models of PMSMs in dq-axes are cross-coupled together with the limitation of DC-link voltage. A nonlinear PMSMs mathematic model in the FW region is presented based on the voltage angle. The solving of the nonlinear mathematic model of PMSMs in FW region will lead to heavy computation load for digital signal processing (DSP). To overcome such a problem, a linearization method of the voltage angle is also proposed to reduce the computation load. The selection of transiting points between the constant torque region and FW regions is researched to improve the performance of the driven system. Compared with the proportional integral (PI) controller, the proposed CTMPC has obvious advantages in dealing with systems’ nonlinear constraints and improving system performance by restraining overshoot current under step torque changing. Both simulation and experimental results confirm the effectiveness of the proposed method in achieving good steady-state performance and smooth switching between the constant torque and FW regions.
Keywords: permanent magnetic synchronous motors; continuous-time model predictive control; flux-weakening; smooth transition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/2051/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/2051/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:2051-:d:121551
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().